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Abstract Adaptive resonance theory (ART) demonstrates
how the brain learns to recognize and categorize vast
amounts of information by using top–down expectations
and attentional focusing. ART 3, one member of the ART
family, embeds the computational properties of the chem-
ical synapse in its search process, but it converges slowly
and is lack of stability when being applied in pattern
recognition and analysis. To overcome these problems,
Nitric Oxide (NO), which serves as a newly discovered
retrograde messenger in Long-Term Potentiation (LTP), is
introduced in retrograde adaptive resonance theory
(ReART) model presented in this paper. In the presented
model a novel search hypothesis is proposed to incorporate
angle and amplitude information of an external input vector
to decide whether the input matches the long-term memory
(LTM) weights of an active node or not, and the embedded
NO retrograde mechanism makes the search procedure a
closed loop, which improves the stability and convergence
speed of the transmitter releasing mechanism in a synapse.
To make the model more adaptive and practical, a
forgetting mechanism is built to improve the weights
updating process. Experimental results indicate that the
proposed ReART model achieves low error rate, fast
convergence and self-organizing weights regulation.
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1 Introduction

Adaptive resonance theory (ART), introduced by Carpenter
and Grossberg (2002), is a neural network that self-
organizes recognition codes in response to sequences of
input samples. It addresses the stability–plasticity dilemma
successfully, which describes how a learning system can
preserve its previously learned knowledge while keeping its
ability to learn new patterns (Grossberg et al. 2004).

Research has led to the development of three classes of
the ART systems: ART 1, ART 2 and ART 3. ART 1 self-
organizes recognition categories in response to arbitrary
sequences of binary input patterns (Carpenter and
Grossberg 1987). ART 2 does the same for either binary
or analog inputs. ART 3, based on ART 2, includes a model
of the chemical synapse embedded in network hierarchies,
which solves the memory search problem of ART systems
(Carpenter and Grossberg 1990). Besides, variations of
these models adapted to the demands of individual
applications have been developed (Levine and Penz 1990;
Kumar and Guez 1991; Williamson 1997; José and
Wolfram 1999; Chang et al. 2000; Grossberg et al. 2004;
Quah et al. 2005; Stephen et al. 2005; Feng and José 2006).

A basic ART system consists of two subsystems, an
attentional subsystem and an orienting subsystem. The
stabilization of learning and activation occurs in the
attentional subsystem, which contains two layers, F1 and F2
shown in Fig. 1. Once the system receives an input vector,
layer F1 generates a bottom–up signal to layer F2. Then the
system searches in its memory for the best-matched
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category vector, activates the relevant node and generates
an up–down expectation signal to layer F1. This is called
Resonance between the input sample and the relevant node
in memory. The matching criterion is given by a vigilance
parameter ρ. Low vigilance allows broad generalization,
coarse categories and abstract memories. High vigilance
leads to narrow generalization, fine categories and detailed
memories (Carpenter and Grossberg 2002). If the bottom–
up and top–down signals match each other, the related
node’s long-term memory (LTM) weight will be updated.
Otherwise, a reset signal generated by the orienting
subsystem will lead to a new search-match cycle. That is
to say that the orienting subsystem controls the attentional
subsystem when a mismatch occurs in the attentional
subsystem.

ART 3, one member in the ART family, can be either
fast or slow learning and distributed of compressed code
representations. Although some main properties of neuro-
transmitters are embedded in the architecture model, there
are still some limitations in classification accuracy, conver-
gence speed, and weights updating mechanism of ART 3,
as well as ART 3 is sensitive to the selection of vigilance
parameter; therefore, further research is needed and more
properties of neurotransmitters can be introduced to ART 3
to overcome the shortcomings.

It is well known that Nitric Oxide (NO), as a
neurotransmitter, plays a very important role in synaptic
actions. The traditional neurotransmitters, such as Ca2+ and
Na+, release from point to point. But NO, as a very small
and nonpolar molecule, will transmit four-dimensionally in
both space and time. It has strong neuro-modulating ability,
which provides new inspiration about some of the tradi-
tional tenets in the domain of brain science, artificial neural
network and so on. Experiments have shown that repetitive
activation of excitatory synapses in the hippocampus, a
brain region known well to be essential for learning and
memory, caused an increase in synaptic strength that could
last for hours or even days (Gladys and Kelly 1999). This

long-lasting synaptic enhancement, known as Long-Term
Potentiation (LTP), is widely believed to be induced by
learning (Whitlock et al. 2006), and provides an important
key to understand the cellular and molecular mechanisms
by which memories are formed and stored. NO plays the
role of retrograde messenger in LTP (Christelle and
Garthwaite 2003). It diffuses out of postsynaptic sites into
presynaptic sites, leading to the increase of the neurotrans-
mitter release.

Naturally embedding NO retrograde mechanism in
ART3, this paper presents a novel adaptive resonance
theory model named Retrograde ART (ReART in short).
Based on NO retrograde mechanism in LTP, the novel
model, ReART, presents an efficient search hypothesis,
improves the presynaptic transmitter accumulation and
release, thereby it achieves lower error rate, faster conver-
gence in data classification than the original ART 3.
Furthermore, because of the closed loop search procedure
the embedded retrograde mechanism also improves the
stability of the model. Another feature of ReART is its
unique weights updating mechanism. By revisiting the
characteristic of human brain memory (Solan and Ruppin
2001; Ochsner et al. 2002), we introduce a forgetting
mechanism, which helps reducing memory consumption.
Simulations demonstrate that the proposed model has self-
organized weights regulation ability.

The rest of this paper is organized as follows. Section 2
first provides some materials about ART 3 chemical
synapse model and NO retrograde mechanism in LTP, and
then clarifies the proposed ReART network based on NO
retrograde physiological mechanism. Section 3 shows the
simulation results of ReART comparing with the original
ART 3. The further analyses and discussions are presented
in Section 4.

2 Methodologies

2.1 ART 3 chemical synapse

The electrical, ionic, and chemical events in a dendritic
spine synapse are detailed by Carpenter and Grossberg
(1990). The axon terminal produces neurotransmitter
continuously. Some of them will be stored in the axon
terminal. Some will be released to postsynaptic receptors,
leading to the change of ionic permeability of postsynaptic
membrane. Others may move to extra cellular space, or be
destroyed by an enzyme, or absorbed by the presynaptic
terminal.

The notation to describe these transmitter properties in
ART 3 is summarized in Fig. 2 for a synapse between the
ith presynaptic node and the jth postsynaptic node. The
presynaptic signal, or action potential Si arrives at a

Layer F2

Layer F1

Bottom-up
signal 

Up-down 
expectation 

Input vector

Fig. 1 Schematic diagram of attentional subsystem. Once the system
receives an input vector, layer F1 generates a bottom–up signal to layer
F2. Then the system searches in its memory for the best-matched
vector, and generates an up–down expectation signal to layer F1. This is
called Resonance between the input vector and the relevant vector in
memory. The matching criterion is given by a vigilance parameter ρ. If
the bottom–up and top–down signals match each other, the relevant
node’s LTM weight will be updated. Otherwise, a reset signal generated
by the orienting subsystem will lead to a new search-match cycle
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synapse whose adaptive weight, or long-term memory, is
denoted by zij. The variable zij is identified with the
maximum amount of available transmitter. When the
transmitter at this synapse is fully accumulated, the amount
of transmitter uij available for release is equal to zij. When a
signal Si arrives, transmitter is typically released. The
variable vij denotes the amount of transmitter released into
the extra cellular space, a fraction of which is assumed to be
bound at the postsynaptic cell surface and the remainder
rendered ineffective in the extra cellular space. Finally, xj
denotes the activity, or membrane potential, of the post-
synaptic cell.

2.2 ART 3 dynamical equations

Equations (1–3) govern the dynamics of the variables zij,
uij, vij at the ijth pathway and xj for the jth node of an ART
3 system, where Ji denotes the excitatory inputs, and yi the
inhibitory inputs (Carpenter and Grossberg 1990).

duij
dt

¼ zij � uij
� �� uij release rate x½ � ð1Þ

dvij
dt

¼ �vij þ uijx� vij reset signal z½ � ð2Þ

"
dxi
dt

¼�xi þ A� xið ÞJi � Bþ xið Þyi

¼�xi þ A� xið Þ �
X
j

vij þ
X
l

vil

( )
� Bþ xið Þz

ð3Þ
Equation (1) says that presynaptic transmitter is pro-

duced or mobilized until the amount uij of transmitter
available for release reaches the maximum level zij. The

adaptive weight zij itself changes on a slower time scale of
learning, and remains essentially constant on the time scale
of a single reset event. The ART search hypothesis I
indicates that the available presynaptic transmitter uij is
released at a rate that is proportional to Si·f (xj), where

f xj
� � ¼ 0; xj � �"1

"1; "2 > 0:"2
"1

� xj þ "2; xj > �"1

8<
:

A fraction of the presynaptic transmitter becomes the
postsynaptic bound transmitter after being released. For
simplicity, we ignore the fraction of released transmitter
that is inactivated in the extra cellular space. To implement
the reset process, the ART search hypothesis II is
postulated: the nonspecific reset signal quickly inactivates
postsynaptic membrane channels at which the transmitter is
bound. Equation (2) indicates that the bound transmitter is
inactivated by the reset signal.

Equation (3), for the postsynaptic activity xj, is a
shunting membrane equation such that excitatory inputs
drive xj up toward a maximum depolarized level equal to A;
inhibitory inputs drive xj down toward a minimum hyper-
polarized level equal to −B; and activity passively decays to
a resting level equal to 0 in the absence of inputs, as shown
in Fig. 3. The net effect of bound transmitter at all synapses
converging on the jth node is assumed to be excitatory, via
the term:

P
l vil. Internal feedback from within the target

field is excitatory, while the nonspecific reset signal is
inhibitory. Parameter ɛ in Eq. (3) is small, corresponding to
the assumption that activation dynamics are fast relative to
the transmitter accumulation rate.

The ART 3 system can be simplified for purposes of
simulation. Suppose that ɛ << 1 in Eq. (3); the reset signals
in Eqs. (2) and (3) are either 0 or much larger than 1; and net
intra-field feedback is excitatory. Then Eqs. (1), (4) and (5)
approximate the main properties of ART 3 system dynamics.

dvij
dt

¼ �vij þ uijx; z ¼ 0

vij ¼ 0; z � 1

8><
>: ð4Þ

NODE i � NODE j

path weight zij

Si 

vij 

uij
xj

presynaptic

transmitter 

presynaptic 

signal 

postsynaptic 

activation 

released and  

bound transmitter 

Fig. 2 Schematic drawing for ART 3 chemical synapse. When the
presynaptic signal Si arrives at a synapse whose long-term memory is
denoted by zij, transmitter uij available for release is typically released.
The variable vij denotes the amount of transmitter released into the extra
cellular space. Finally, xj denotes the activity of the postsyn-aptic cell

A-B
xj

f(xj) 

f(0)>0

Fig. 3 The nonlinear function
f (xj). f (0)>0 guarantees that
transmitter can be released when
the signal S arrives at the
synapse
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2.3 Analyses of ART 3

1) Miss of the perfect matched node
During the search process of ART 3, there may exist two
or more nodes whose LTM weights Zi match S well:

cos S; Zið Þ � r i ¼ 1; 2; . . . ;m; ð6Þ

where m denotes the number of nodes encoded in mem-
ory. But among Z1, Z2,..., Zm, there is only one perfect
match ZI to S:

cos S; ZIð Þ � cos S; ZIð Þ � r i 6¼ I : ð7Þ

In original ART 3, the Ith node may not be first
activated because the length ||ZI|| is small, then:

S � Zi � S � ZI : ð8Þ
So the perfectly matched node for the input pattern

couldn’t win first. The mismatched but with large weight
value nodes may be undesirably preferred; probably the
perfectly matched node wins only if other nodes’
weights iteratively get even smaller values by the reset
signal. The search-reset circle needs to be improved.

2) Repeated search and reset
In ART 3 search process, an input pattern may later
activate a different category node I whose weights are
large but whose vector of LTM weights forms a poorer
match than the original, smaller weights. Then the reset
signal will selectively inactivate transmitter at postsyn-
aptic sites adjacent to the Ith node. Following such a
reset wave, the new signal pattern S·Ui will be biased
against the Ith node relative to the original pattern.
However, it could happen that the time interval prior to

the reset signal is so brief that only a small fraction of
available transmitter is released. Then S·UI could still be
large relative to a correct S·Ui. If this were to happen, the
Ith node would simply be selected again, then reset
again, leading to an accumulating bias against that choice
in the next time interval. This process could continue
until enough transmitters Vi is inactivated to allow
another node, with smaller weights Zi but a better pattern
match, to win the competition. Sometimes the reset event
may iterate so many times that it converges slowly.

3) The potential phenomenon of pattern excursion
The pattern matching process in ART system is to
compare an external input vector with the internal LTM
weights of an active node. The matching criterion is
determined by the vigilance parameter ρ. It leads either
to a resonant state, which persists long enough to
permit learning, or to a parallel memory search. If the
search ends at an established code, the LTM weights
may either remain the same or incorporate new
information from matched portions of the current input.
If the search ends at a new node, new LTM weights

Pattern II

x2 

x1 

xn 
Pattern I

y1 

…

Fig. 4 The input sequences x1, x2,..., xn are all belong to pattern I, and
y1 belongs to pattern II
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Fig. 5 Summary mechanism for LTP. Ca2+ channels open when
glutamate activates NMDA receptors. If the membrane of the
postsynaptic neuron is partially depolarized, the Ca2+ channels are
neurotransmitter and voltage dependent, and more AMPA receptors
are present. Then in order for the structure of the cell to change, new
proteins must be synthesized. It is quite possible that Ca2+ channels
act to initiate protein synthesis and to stimulate the diffusion of nitric
oxide. As a soluble gas, NO could diffuse out of the postsynaptic
membrane, and interact with an enzyme in the presynaptic terminal
button, which is involved in the production of glutamate, resulting in
an increase in the rate of glutamate release
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learn the current input. Match-based learning allows
memories to change only when input from the external
world is close enough to internal expectations, or when
something completely new occurs.

Assume the input sequences are x1, x2, ..., xn which all
belong to pattern I. As illustrated in Fig. 4, the angles
between them are:

x1 � x2
x1j j � x2j j < r

xi � xj
xij j � xj

�� �� > r; i; j ¼ 1; 3; 4; . . . ; n: ð9Þ

When x1, x2, ..., xn are presented, the search and learning
process is: first, node 1 will be encoded to learn x1:

w1 ¼ x1: ð10Þ

Then switching to x2, which isn’t close enough to x1, node
2 is encoded to learn x2; third, input the sequences: x3, ...,
xn, they are close enough to x1, so node 1 is selected and
modified. At last, there are two nodes to store pattern I.
When the sequences are input repeatedly, there could be
more and more nodes encoded to store the same pattern.
Undoubtedly, it squanders the memory space.

In addition, when inputting y1, one node is encoded to
learn pattern II. But y1 is the only vector that belongs to
pattern II, so pattern II is not representative, or even a noise
vector. Still, the network holds one node to store it. This
also squanders the memory space, and even causes wrong
clustering. We call this the potential phenomenon of pattern
excursion.

The first two shortcomings are partly because the
transmitter release mechanism between the embedded
chemical synapse is not quite complete. Fortunately, NO

has special neuro-modulating ability, especially serves as
retrograde messenger in LTP, which provides new inspira-
tion for transmitter release mechanism between synapse.

2.4 Nitric oxide in long-term potentiation

A role for NO as an intercellular signaling molecule in the
nervous system was first suggested by Garthwaite et al.
(1988). NO is a very small and nonpolar molecule, and it
will spread in three dimensions away from a site of
synthesis regardless of intervening cellular or membrane
structures. Another feature of NO signaling is suggested by
the fact that the neuronal isoform of nitric oxide synthase
(nNOS) is a soluble enzyme and likely to be distributed
throughout a neuron’s cytoplasm. The whole surface of the
neuron is therefore a potential release site for NO. These
properties allow NO to act without the need for presynaptic
specializations, and its action is not necessarily confined to
the immediate postsynaptic neuron. In conclusion, NO has
opened new dimensions in our thinking about how
information is transmitted by neurons (Bredt and Snyder
1992; Malenka and Nicoll 1999; Philippides et al. 2000;
Rosenberg et al. 2000; Smith and Philippides 2000; Burette
et al. 2002; Yang 2003; Ledo et al. 2005).

S S
* 

U1 U1 

U2 U2 

Fig. 6 Schematic drawing for U1, S, U2 (the left one) and U1, S*, U2

(the right one)

zij

Si 

vij 

uij xj 

zij

Si 

vij

uij xj 

NODE i  →  NODE j

Si xj 

NO retrograde
NO

Fig. 7 Increase of transmitter release based on NO retrograde. When the
presynaptic signal Si arrives at a synapse, transmitter is accumulated and
released (left one). The transmitter bound at the postsynaptic cell stimulates

the production of Nitric Oxide, which diffuses out of postsynaptic sites
into presynaptic sites, increasing the transmitter release (middle one). As a
result, there are more transmitters accumulated and released (right one)

ReART

TimeI

ART 3

0 

S  U. i 

Fig. 8 The decrease of the functional value Ui during the reset events.
The reset wave can decrease the mismatch weights’ functional value
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In neuroscience, Long-Term Potentiation is the potenti-
ation of the connection between two nerve cells, which lasts
for an extended period of time (minutes to hours in vitro
and hours to days or even months in vivo). LTP can be
induced experimentally by applying a sequence of short,
high frequency stimulations (HFS) to nerve cell synapses.
The phenomenon was discovered in the hippocampus over
30 years ago. Recent research shows that one-trial
inhibitory avoidance learning in rats produced the same
changes in hippocampal glutamate receptors as induction of
LTP with HFS and concludes that learning actually induces
LTP in hippocampal area CA1 (Whitlock et al. 2006).

The summary mechanism for LTP is illustrated in Fig. 5.
Glutamate (also called glutamic acid) is the most common
excitatory neurotransmitter in the central nervous system,
and NMDA is a type of glutamate receptor. Researches
indicate that Ca2+ channels, which are normally blocked by
Mg2+, open when glutamate activates NMDA receptors. If
the membrane of the postsynaptic neuron is partially
depolarized, the Ca2+ channels are neurotransmitter and
voltage dependent, and more AMPA, another type of
glutamate receptor, are present. Then in order for the
structure of the cell to change, new proteins must be
synthesized. It is quite possible that Ca2+ channels act to
initiate protein synthesis and to stimulate the diffusion of
nitric oxide. As a soluble gas, NO could diffuse out of the
postsynaptic membrane, and interact with an enzyme in
the presynaptic terminal button, which is involved in the
production of glutamate, resulting in an increase in the rate

of glutamate release. Research also indicates that postsyn-
aptic Ca2+ influx through glutamate receptors and subse-
quent postsynaptic vesicle fusion trigger a robust induction
of presynaptic miniature release after high-frequency stimu-
lation at Drosophila neuromuscular junctions (Yoshihara
et al. 2005).

In one word, during LTP, NO diffuses out of postsyn-
aptic sites into presynaptic sites, leading to the increase of
neurotransmitter release and improving the neurotransmit-
ting mechanism, which gives inspiration to the original
ART 3 neural networks.

2.5 The retrograde ART search model

In this section, we propose a novel retrograde ART search
model. ReART search model consists of a new search
mechanism based on NO retrograde in LTP and the node
pruning mechanism.

2.5.1 A novel search hypothesis

ART search hypothesis III: if the intracellular transmitter Ui

isn’t the perfect match for the signal vector S, the amount of
transmitter that will be released from the ith node to its
postsynaptic node is decreased.

We know that the angle between S and Ui can measure
the pattern match degree:

cos S;Uið Þ ¼ S � Ui

Sk k � Uik k :

Define a vector σ ¼ σ1;σ2; . . . ;σn

� �
which can repre-

sent the angle information between S=(s1,s2,...,sn) and
Ui=(ui1,ui2,...,uin) to a great extent:

sk ¼ sk � uikj j
sk þ e

k ¼ 1; 2; . . . ; n; ð11Þ

where e is small and positive, which avoids dividing by
zero. sk measures the similarity between sk and uik.

Table 1 Parameters used for the simulations

uij ¼
0; xj � �0:01

Si � ð3 � xj þ 0:1Þ; xj � �0:01

8<
:

e ¼ 0:001

d ¼ 0:85

The available presynaptic transmitter uij is concerned with the
presynaptic signal Si and the activity of the postsynaptic cell, xj. The
parameter e is small. The LTM weights are updated at the rate of d.
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Fig. 9 The results of ART 3, ρ=0.95. ART 3 sorts the input patterns into 17 categories
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Compare sk with vigilance parameter ρ*, where
ρ*∈(0,1), which is usually set equal to 0.5. We get a novel
input vector S*:

s*k ¼ sk ; sk < r*

0; sk � r*
:

(
ð12Þ

That means, if sk is similar to uik for k = 1,2, ..., n, we
consider Ui matches S well; otherwise, Ui isn’t the perfect
match to S, and there will be less transmitter released to ith
postsynaptic node according to search hypothesis III.

The calculating process is just like the “and” operation in
Boolean calculation. We give a simple example here.
Suppose the input vector S=[1.5, 2.5, 3.5, 4.5, 5.5]T, and
there are two nodes stored in the system whose transmitter
available for release are: U1=[1.1, 2, 3, 4, 5]

T, U2=[5, 6, 7,
6, 8]T, as shown in Fig. 6. Let ρ*=0.5, e=0.001, then we
get the following inequations:

sk � u1kj j
sk þ 0:001

r* ¼ 0:5; k ¼ 1; 2; . . . ; 5

sk � u2kj j
sk þ 0:001

> r* ¼ 0:5; k ¼ 1; 2; 3

sk � u2kj j
sk þ 0:001

< r* ¼ 0:5; k ¼ 4; 5

So we have the new input S*=[0, 0, 0, 4.5, 5.5] as seen
in Fig. 6, which represents the match degree between input
signal and the LTM weights of an active node.

S*, instead of S, serves as the presynaptic signal,
containing more information of patterns match degree.

Simulations demonstrate the efficacy and accuracy of the
proposed model.

2.5.2 Increase of transmitter releasing based
on NO retrograde

As we mentioned earlier, NO diffuses out of postsynaptic
sites into presynaptic sites in LTP, increasing neurotrans-
mitter release. Based on NO retrograde mechanism, we
rebuild the release equation in ART 3:

duij
dt

¼ ðzij � uijÞ � uijxþ uijxj ð13Þ

The increment uijxj, as a result of NO retrograde, is
proportional to the postsynaptic activity xj. Equation (13)
indicates that thanks to NO retrograde, there will be more
transmitters released to the postsynaptic sites in each time
interval shown in Fig. 7, so the reset wave can decrease the
mismatch weights’ functional value uij much more than
original ART 3, as illustrated in Fig. 8. Therefore, the
improved model converges faster in simulations on con-
ventional computers.

2.6 The forgetting mechanism

2.6.1 The forgetting mechanism

ART 3 network model is unsupervised. Along with the
learning process of the input vectors, the weights in
memory will be modified repeatedly, and there will be
more and more nodes encoded in memory. However, the
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Fig. 10 The results of ReART, ρ=0.95, ρ*=0.5. ReART sorts the 50
patterns into 16 categories: pattern 46 appears in category 2 instead of

category 3; category 12won in response to inputs 41 and 42; pattern 38was
placed in category 9; the third and fifth categories obtained better groups

Table 2 Comparison of recognition rate

Algorithm SOM K-means ART 3 ReART

Recognition rate (%) 76.0 80.0 80.0 88.0
1 2 3 4 5 1 2 3 4 5

Input 1 Input 2 
Fig. 11 Input samples
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input vectors are random, or even wrong, to avoid the
potential phenomenon of pattern excursion we construct the
forgetting mechanism, which is one of the great functions
of human brain. The model is to define a cumulating matrix
N for each node in memory to record the number of a node
being learned, whose initial value is equal to 0. When the
ith node is learned once, N(i) adds 1:

NðiÞ ¼ NðiÞ þ 1: ð14Þ

Checking all the nodes in memory every stretch T (called
forgetting interval), in case:

1) There exist two nodes whose weights satisfy:

wi � wj

wij j � wj

�� �� � r; i 6¼ j i; j ¼ 1; . . . ; n; ð15Þ

incorporate the ith and jth node to encode a new node
with its LTM weights w:

w ¼ wiNðiÞ
NðiÞ þ NðjÞ½ � þ

wjNðjÞ
NðiÞ þ NðjÞ½ � : ð16Þ

In other words, the network may generate two or more
different nodes to learn the same category, and then we
need to prune the excrescent nodes.

2) The number of input vectors is very large, we check
matrix N in each forgetting interval T, when

NðIÞ � n	; ð17Þ

we consider that the Ith node is an erroneous node, abandon
it, where vigilance n* is a positive integer number, whose
value is according to the number of input patterns. It means

that if a node is learned less than n* times, we think it to be
an erroneous node, or noise vector, which should be pruned.

The forgetting mechanism, which incorporates the matched
nodes and prunes the erroneous nodes, regulates the LTM
weights dynamically, and efficiently makes use of the memory
space. The general node forgetting adjustment process is:

ReART Model
Input: input sample X, vigilance ρ, match degree vigilance ρ*,
learning times vigilance n*
Output: LTM weights W

Step 1. Data pretreatment;
Step 2. Compete for a winner node I;
Step 3. Check for reset;
Step 4. If the winner node matches the current input vector by
vigilanceρ, then update LTM weights, or else reset UI values and go to
step 2;
Step 5. If the current time gets to the forgetting interval T, then do the
node forgetting adjustment, or else input the next pattern and go to
step 1;
Step 6. End.

3 Results

In this section, the performance evaluation ofReARTis given.
Table 1 shows the parameters used for the simulations.

3.1 Comparison of accuracy on analog input patterns

The simulations summarized in Figs. 9 and 10 illustrate
how ART 3 and ReART group 50 analog input patterns.
There are 25 discriminating variables in each input vector.

N o d e  1  N o d e  2  N o d e  3  N o d e  4  N o d e  5  N o d e  6  

Fig. 12 LTM weights

1 2 3 4 5

t0 

winner node node node node node 

t0

t2'

t t

t1

t2

t1'

 

1 2 3 4 5 winnernode node node node node Fig. 13 The winning nodes
in each search-reset cycle, where
ρ=0.98. A series of mismatch
resets lead to the matched
category. ART 3 activate the
matched category at t=t1 (left
one). ReART comparatively
causes less resets, and find the
matched category at t=t1’,
Obviously, t1> t1’ (right one).
At t= t0, input 1 switches to
input 2. Also, the searching time
(t2−t0)>(t2’−t0)
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The samples were repeatedly presented in the order
1,2,...,50 until the category structure stabilized. ART 3
sorts the 50 patterns into 17 recognition categories, while
ReART sorts them into 16 categories. We can see some
delighted improvement in Fig. 10: pattern 46 appears in
category 2 instead of category 3; category 12 won in res-
ponse to inputs 41 and 42; pattern 38 was placed in
category 9; the third and fifth categories obtained better
groups. In other words, more input patterns find its perfect
match category.

The improved classification of ReART is due, in part, to
the introduction of the magnitude information. During the
search process, when a presynaptic signal Si arrived at the
synapse, it firstly compares with uij according to ART
search hypothesis III. If the amplitude information of Si
matches uij by threshold ρ*, nothing will be done with Si; or
else Si should be decreased properly. So there is less
transmitter bound at the postsynaptic cell surface whose
weights in the bottom–up pathway don’t match Si well, and
the perfect matched node could win first in the competition.

We also sort the 50 input patterns into 16 categories by
using self-organizing maps (SOM) (Kohonen 1997) and K-
means algorithm (MacQueen 1967) using MATLAB soft-
ware. Here is the comparison of the recognition rate in
Table 2, which indicates that ReART carries out the best
classification.

3.2 Comparison of time consumption

3.2.1 Six-dimensional input vectors

The input vectors and the bottom–up LTM weights shown
in Figs. 11 and 12 are taken from Carpenter and Grossberg
(1990). The input set consists of two patterns, which
contains six discriminating variables. There are already
five nodes encoded in memory.

Ignoring magnitude information, we use ART 3 and
ReART to implement the classification. The winning nodes
in each search-reset cycle are shown in Fig. 13. The
introduction of ART search hypothesis III makes the
winning nodes in a different time sequence, and new nodes
(node 3) have chance of winning in the competition.

3.2.2 Handwritten digits

This example illustrates how ART 3 and ReART cluster a
set of handwritten digits. The dataset “MNIST handwritten
digits” is available at http://www.cs.toronto.edu/~roweis/
data.html. It contains grayscale 28×28 digits of “0” through
“9”; about 6,000 training examples of each class; 1,000 test

Fig. 14 Input digits images of “1,” “6” and “9”

100 200 300 400 500 600
0

500

1000

1500

ART 3

ReART

Input vectors 

Δt 

Fig. 15 Time consumption curve. Thanks to NO retrograde, ReART
runs faster than ART 3

Table 3 Distribution of Iris data

Attribute Range in mm

Sepal length [43,79]
Sepal width [22,44]
Petal length [10,69]
Petal width [1,25]

species 1
species 2
species 3

Fig. 16 Projection of two principal components of the Iris data.
Species 2 and 3 are much alike from the overlapping of their
respective data set
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examples. We choose digits “1,” “6,” and “9,” 200 samples
for each digit image, totally 600 input patterns. Samples are
shown in Fig. 14.

First, decrease the input vectors’ dimension from 784
down to 2 by locally linear embedding (LLE) (Roweis and
Saul 2000). Secondly, use ART 3 and ReART to do the
clustering. The recognition rate in up to 98%, and Fig. 15
shows the time consumption. Obviously, ReART runs faster
than ART 3. Owing to the introduction of NO retrograde,
after each reset wave, the winner node loses more trans-
mitters, which reduces the time consumption.

3.2.3 Time complexity analysis

The time complexity can be analyzed as follows: presyn-
aptic transmitter uij is released at a rate jointly proportional
to Si and a function f(xj), of the postsynaptic activity.
Assume that at time t=0, transmitter uij has accumulated to
its maximal level zij and that activity xj and bound
transmitter vij equal 0. Consider a time interval t=0+

immediately after Si arrives at the synapse. The amount of
bound transmitter is determined by equation:

dvij
dt

¼ �vij þ uijSi f ðxjÞ � vij½reset signal z�: ð18Þ

At time t=0+,

dvij
dt


 zijSi f ð0Þ: ð19Þ

In the next time interval, xj has grown up to a positive
value. Then as a retrograde messenger, NO diffuses out of

postsynaptic sites into presynaptic sites, enhancing the
transmitter releasing by Eq. (11):

duij
dt

¼ ðzij � uijÞ � uijxþ uijxj

So the reset wave can decrease the mismatch weights’
functional value uij much more than ART 3, and ReART
causes less mismatch nodes winning before the right
category node is selected, and can converge faster. But
ART 3 may spend much more time on inactivating the
mismatch nodes.

3.3 Comparison of memory weights on Fisher’s Iris data

Fisher’s Iris data was first used by Ronald Fisher (Fisher
1936). There are four discriminating variables (petal, sepal
length, petal and petal width) and three species of iris
(Setosa, Virginica and Versicolor). It consists of 50 speci-
mens for each of the species. The features are shown in
Table 3 (Quah et al. 2005). Figure 16 gives the principal
component analysis of Iris data (Jollife 1986; Ahn and Oh
2003). We can see that the Virginica and Versicolor classes
are much alike from the overlapping of their respective data
sets. In this part, we use Iris data to verifying the
advantages of the forgetting mechanism.

Design the learning rate parameter d becoming smaller
and smaller as time goes on. One hundred fifty patterns are
presented repeatedly till the clustering is stable. When ρ=
0.98, the recognition rate of ART 3 and ReART are both
98.67%. The node numbers in memory after each iteration
are illustrated in Table 4.

Table 4 Numbers of the encoded nodes

Iteration times 1 2 3 4 5 6 7 8 9 10

Node numbers
in memory

ART 3 4 5 6 7 8 9 10 11 12 13
ReART 3 3 3 3 3 3 3 3 3 3

When iterating once more, ART 3 adds one more node, but ReART holds only 3 nodes stably to store the input patterns.

Table 5 When iterating thirdly, the top–down LTM weights in memory

Nodes ART 3 Nodes ReART

1 0.6286 0.4263 0.1743 0.0000 1 0.6286 0.4263 0.1743 0.0000
2 0.7622 0.3484 0.5528 0.1632 2 0.7482 0.3423 0.5402 0.1600
3 0.6421 0.2932 0.4305 0.1263 3 0.8390 0.3709 0.7064 0.2492
4 0.7633 0.3493 0.5554 0.1646 –
5 0.7633 0.3493 0.5554 0.1646 –
6 0.8390 0.3709 0.7064 0.2492 –

ART 3 encodes nodes 2, 4 and 5 with the similar weights. Comparatively, ReART encodes only 3 nodes to store the input patterns.
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Table 5 shows the top–down LTM weights in memory
when iterating thirdly. ART 3 encodes nodes 2, 4 and 5
with the similar weights. Comparatively, ReART encodes
only three nodes to store the input patterns.

Because ART 3 neural network is unsupervised in its
learning process, the weights in memory will be modified
repeatedly, causing that they deviate from the initial
pattern, which induces the establishment of them. When
input sequences are presented repeatedly, the former
weights may not be activated because they cannot match
the initial inputs by the vigilance parameter ρ, and a new
node will be established in respond to the current input.
The phenomenon of pattern excursion results in an increase
in node numbers. By incorporating the matched nodes and
abandoning the erroneous nodes according to the forget-
ting mechanism, ReART obtains efficient encoding in
memory.

4 Discussions

Regarding data clustering, adaptive resonance theory has
become an indispensable tool in many areas of engineering
and attracts more and more attention in other fields. ART 3,
a member of the ART neural networks family, embeds the
computational properties of chemical synapses to fulfill its
search process. However, ART 3 still has limitations in
recognition rate, convergence speed, and weights updating
mechanism.

Actually, the transmitter release process between synap-
ses is somewhat complicated. Recent research has shown
that NO, as a very small and nonpolar molecule, will spread
in three dimensions away from a site of synthesis regardless
of intervening cellular or membrane structures (Lancaster
1994; Wood and Garthwaite 1994). NO has strong neuro-
modulating ability. Especially, in long-term potentiation, it
diffuses out of postsynaptic sites into presynaptic sites,
serving as a retrograde messenger. NO leads to the increase
of neuro-transmitter release indirectly and guarantee the
information transfer between synapse. NO not only plays
an important role in neuroscience, but also gives inspiration
to neural networks and other neural computation.

Based on this motivation, this paper presents retrograde
ART (ReART), an improved adaptive resonance model
embedding NO retrograde mechanism. We introduce NO
retrograde mechanism into ART 3 model and establish
feedback in the search-reset cycle. To be more specific, our
contributions can be listed as following:

First, a novel efficient search hypothesis is proposed. By
investigating the different ways of measuring the distance
between two vectors, we check the input vector and the
expectation vector element by element to obtain the

distance information. The mismatched elements are reduced
to zero according to the novel transmitter released hypoth-
esis. The simulation results on some analog samples show
that our ReART model gets better categories than the
original ART 3. However, the rigorous mathematical proof
remains unsolved.

Second, the convergence speed of an algorithm is a key
issue. In ART 3, after a sample vector is input, the search
for a proper node to be activated sometimes sticks into a
search-reset-search circle and converges slowly at the right
node. In this paper, the presynaptic transmitter accumula-
tion and releasing mechanism is revised, leading to stable
and fast convergence of the searching process. Based on
NO retrograde in LTP, a novel transmitter released
mechanism is presented. As a retrograde messenger, NO
diffuses to the presynaptic synapse from the postsynaptic
synapse. It enhances the amounts of presynaptic transmitter
to be released, resulting in an increase of the neurotrans-
mitter received by the postsynaptic node, as shown in
Fig. 7. Mathematically, the improved release equation is
formulated. In application to data classification, ReART
converges faster. But it should be noted that the conver-
gence problem of the novel search mechanism has not been
thoroughly analyzed and proved yet, and further study is
still necessary.

Third, another important function of human brain is
oblivion. To avoid the potential phenomenon of pattern
excursion during the weights learning process, the forget-
ting mechanism is introduced to ReART. By incorporating
the matched nodes and abandoning the erroneous nodes,
the proposed model regulates the LTM weights dynamical-
ly, and so efficiently makes use of the memory space.
Simulation results demonstrate that to store the same
samples, ReART uses fewer nodes than the original ART
3 and reduces memory consumption.

We human beings can rapidly learn new environments
without rapidly forgetting what we have already known. As
a result, we don’t need to fear that we will suddenly forget
our parents’ faces when learning to recognize a new
friend’s face. This is sometimes called the problem of
catastrophic forgetting. The problem that the brain learns
quickly and stably without catastrophic forgetting its past
knowledge has been called the stability–plasticity dilemma
(Grossberg 1980). Every brain system needs to solve the
dilemma. In the ART neural networks, if a good enough
match occurs between bottom–up signal and learned top–
down expectation, previously learned knowledge can be
refined. If new samples can’t form a good enough match
with the LTM weights stored in memory, new category
nodes will be encoded instead of catastrophic forgetting of
an old one. But it requires that the network has enough
storage space.

J Comput Neurosci (2007) 23:129–141 139



It’s important to point out some limitations of ReART
still remain, and future work should be focused on:

1) Selection of the vigilance parameter ρ. In most unsuper-
vised ART systems, when the networks receive input
samples, it needs to test for some times to choose the
right value of ρ. Low vigilance allows broad general-
ization, coarse categories and abstract memories. High
vigilance leads to narrow generalization, fine categories
and detailed memories (Carpenter and Grossberg
2002). The LTM weights of Fisher’s Iris data (as shown
in Fig. 16) with different vigilances are shown in
Table 6. It is obviously seen that our ReART gives
better results than ART 3 with various vigilances, which
means the introduction of NO retrograde and forgetting
mechanism make ReART robust to the selection of the
vigilance parameter ρ. However, the vigilance value is
still limited in a small region and should be decided by
experience. Some supervised learning algorithms have
been presented to overcome this shortcoming (Stephen
et al. 2005), but research on an adaptive vigilance to
unsupervised algorithms is still needed.

2) Sensitive to noise vectors. The ART neural networks
think that every input vector is correct and dependable.
When the network finds a matched node to the current
sample X, the corresponding LTM weights Wi will be
modified based on the current input vector.

Wi ¼ Wi þ X �Wið Þ ð20Þ
To stabilize the weights modifying process, another
equation is given:

Wi ¼ Wi þ d X �Wið Þ ð21Þ

where d represents the learning rate, which is decreas-
ing as time goes on. If X is a noise vector, the network
still modifies the matched LTM weights. So it is
sensitive to noise. Although, the forgetting mechanism
introduced in this paper can reduce noise-induced
memory consumption, ReART still can’t recognize
and avoid noise.

3) LTP is only one of the two major types of synaptic
plasticity. Synaptic plasticity is believed to serve as a
cellular model for learning and memory. It is one of the
fields that progresses rapidly and has a lot of success in
neuroscience. Another major type of synaptic plasticity
is long-term depression (LTD). NO serves as a kind of
retrograde messenger in LTD, as well as in LTP
(Bolshakov and Siegelbaum 1994). Introducing LTP
and LTD cooperation mechanism to ART 3 will
provide new inspiration to find a novel effective
classification and clustering algorithm.

4) Preliminary analysis on NO serving as a retrograde
messenger is provided in this paper, and there are more
functions of NO in neural activities. It is noteworthy to
investigate the effect of NO in neural activities further
and extend the method to the cases of other neural
network models in future work, such as fuzzy ART
(Carpenter et al. 1991b) and ARTMAP (Carpenter
et al. 1991a).
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Table 6 The LTM weights of Fisher’s Iris data by different vigilances

Vigilance LTM weights

Nodes ART 3 Nodes ReART

ρ=0.98 1 [0.6286 0.4263 0.1743 0.0000] 1 [0.6286 0.4263 0.1743 0.0000]
2 [0.7622 0.3484 0.5528 0.1632] 2 [0.7482 0.3423 0.5402 0.1600]
3 [0.6421 0.2932 0.4305 0.1263] 3 [0.8390 0.3709 0.7064 0.2492]
4 [0.7633 0.3493 0.5554 0.1646] –
5 [0.7633 0.3493 0.5554 0.1646] –
6 [0.8390 0.3709 0.7064 0.2492] –

ρ=0.97 1 [0.6288 0.4243 0.1776 0.0021] 1 [0.6288 0.4243 0.1776 0.0021]
2 [0.6383 0.2931 0.4581 0.1374] 2 [0.7511 0.3434 0.5437 0.1606]
3 [0.8389 0.3705 0.7053 0.2484] 3 [0.8390 0.3709 0.7064 0.2492]
4 [0.7661 0.3501 0.5552 0.1638] –

ρ=0.96 1 [0.6300 0.4184 0.1891 0.0075] 1 [0.6300 0.4184 0.1891 0.0075]
2 [0.7092 0.3150 0.5033 0.1425] 2 [0.7608 0.3482 0.5641 0.1711]
3 [0.8195 0.3645 0.6655 0.2239] 3 [0.8464 0.3698 0.7068 0.2469]
4 [0.7833 0.3679 0.5674 0.1748] –

When the vigilance varies, the number of LTM weights in ART 3 changes. On the contrary, thanks to the NO retrograde and the forgetting
mechanism, ReART categorizes stably and quickly.
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